Bamboo leaf derived ultrafine Si nanoparticles and Si/C nanocomposites for high-performance Li-ion battery anodes.
نویسندگان
چکیده
Silicon-based nanomaterials are promising anode materials in lithium-ion batteries (LIBs) due to their high theoretical capacity of 4200 mA h g(-1), more than 10 times that of commercial graphite. Si nanoparticles (NPs) with a diameter of or below 10 nm generally exhibit enhanced lithium storage properties due to their small size and large surface area. However, it is challenging to generate such ultrafine Si NPs by a facile and scalable method. This paper reports a scalable method to fabricate ultrafine Si NPs 5-8 nm in size from dead bamboo leaves (BLs) by thermally decomposing the organic matter, followed by magnesiothermic reduction in the presence of NaCl as a heat scavenger. The ultrafine Si NPs show a high capacity of 1800 mA h g(-1) at a 0.2 C (1 C = 4200 mA g(-1)) rate and are thus promising anode materials in lithium-ion batteries. To achieve better rate capability, the BLs-derived ultrafine Si NPs are coated with a thin amorphous carbon layer (Si@C) and then dispersed and embedded in a reduced graphene oxide (RGO) network to produce Si@C/RGO nanocomposites by a layer-by-layer assembly method. The double protection rendered by the carbon shell and RGO network synergistically yield structural stability, high electrical conductivity and a stable solid electrolyte interface during Li insertion/extraction. The Si@C/RGO nanocomposites show excellent battery properties with a high capacity of 1400 mA h g(-1) at a high current density of 2 C and remarkable rate performance with a capacity retention of 60% when the current density is increased 20 times from 0.2 to 4 C. This work provides a simple, low cost, and scalable approach enabling the use of BL waste as a sustainable source for the production of ultrafine Si NPs towards high-performance LIBs.
منابع مشابه
Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes
The recovery of useful materials from earth-abundant substances is of strategic importance for industrial processes. Despite the fact that Si is the second most abundant element in the Earth's crust, processes to form Si nanomaterials is usually complex, costly and energy-intensive. Here we show that pure Si nanoparticles (SiNPs) can be derived directly from rice husks (RHs), an abundant agricu...
متن کاملSi nanoparticle-decorated Si nanowire networks for Li-ion battery anodesw
We designed and fabricated binder-free, 3D porous silicon nanostructures for Li-ion battery anodes, where Si nanoparticles electrically contact current collectors via vertically grown silicon nanowires. When compared with a Si nanowire anode, the areal capacity was increased by a factor of 4 without having to use long, high temperature steps under vacuum that vapour– liquid–solid Si nanowire gr...
متن کاملSi nanoparticle-decorated Si nanowire networks for Li-ion battery anodes.
We designed and fabricated binder-free, 3D porous silicon nanostructures for Li-ion battery anodes, where Si nanoparticles electrically contact current collectors via vertically grown silicon nanowires. When compared with a Si nanowire anode, the areal capacity was increased by a factor of 4 without having to use long, high temperature steps under vacuum that vapour-liquid-solid Si nanowire gro...
متن کاملHigh Areal Capacity Si/LiCoO2 Batteries from Electrospun Composite Fiber Mats.
Freestanding nanofiber mat Li-ion battery anodes containing Si nanoparticles, carbon black, and poly(acrylic acid) (Si/C/PAA) are prepared using electrospinning. The mats are compacted to a high fiber volume fraction (≈0.85), and interfiber contacts are welded by exposing the mat to methanol vapor. A compacted+welded fiber mat anode containing 40 wt % Si exhibits high capacities of 1484 mA h g-...
متن کاملSilicon nanoparticles encapsulated in hollow graphitized carbon nanofibers for lithium ion battery anodes.
Silicon (Si) is a promising material for lithium ion battery (LIB) anodes due to its high specific capacity. To overcome its shortcomings such as insulation property and large volume change during the charge-discharge process, a novel hybrid system, Si nanoparticles encapsulated in hollow graphitized carbon nanofibers, is studied. First, electrospun polyacrylonitrile (PAN)-Si hybrid nanofibers ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 7 33 شماره
صفحات -
تاریخ انتشار 2015